时事要闻

LeapMind发布超低功耗AI推理加速器IP“Efficiera v2版本”

igoseo.net   2021年12月01日

  11月30日,边缘AI领域的领先标杆企业LeapMind有限公司公布了其正在开发和授权的超低功耗AI推理加速器IP “Efficiera” v2版本(以下简称“v2”)。LeapMind于2021年9月发布了Efficiera v2的测试版,并收到了许多公司的测试及反馈,包括SoC供应商和终端用户产品设计师。Efficiera v2预计2021年12月开始发售,如有意向获取,请通过此邮箱垂询:business@leapmind.io。

  LeapMind首席执行官Soichi Matsuda表示:“去年,我们正式推出了v1的商用版本,许多公司对Efficiera进行了评测。截至2021年9月底,我们共与8家日本国内公司签署了授权协议。‘向世界传播采用机器学习的新设备’是我们根据企业理念所设定的座右铭,而我们正通过提供v1来稳步推进这一理念的落地。在未来,我们将进一步通过技术创新和产品阵容扩展,继续努力实现人工xpj的普及。”

  Efficiera v2根据v1的使用记录和市场评测,扩大了应用范围,在保持最小配置的电路规模基础上,可覆盖更广泛的性能范围,并应用于更多的实际产品。产品由此得到了进一步的完善。

Efficiera v2概念

  LeapMind董事兼首席技术官Hiroyuki Tokunaga博士表示:“自去年发布v1以来,我们强化了设计/验证方法和开发流程,旨在‘开发世界上最节能的DNN加速器’。我们一直在开发v2,以使产品能够适用于专用集成电路(ASIC)和专用标准产品(ASSP)。我们还在开发一个深度学习方面的推理学习模型,以便将超小量化技术的优势最大化。LeapMind的最大优势就在于我们可以提供一种技术来实现双管齐下。”

Efficiera v2的主要规格与特性

  A. 在保持最小电路规模的同时,覆盖更广泛的性能范围,从而扩大应用范围。

硬件特性

  通过多路复用MAC阵列+多核,性能可扩展至48倍

  V2允许你将卷积管道中的MAC阵列数量增加到v1的3倍(可选择x1,x4),并通过提供多达4个内核的选择,进一步扩大性能的可扩展性。

  除卷积和量化外,还可实现硬件执行跳过连接和像素嵌入

  1. 跳过连接是多层卷积神经网络(CNN)中常见的一种操作。(v1中由CPU执行)

  2. 像素嵌入是一种对输入数据进行量化的方法

  资源使用方面,配置与Efficiera 1相同

  1. 有些应用只因AI功能可在规模有限的FPGA器件上实现就能创造价值。

  2. LeapMind分析了一个实用型深度学习模型的执行时间,并仔细选择了额外的硬件功能。

集成到SoC中

  AMBA AXI接口

  AMBA AXI interface

  AMBA AXI继续被用作与外部的接口,并且当接口被视为一个黑盒子时与以前一样,易于从当前设计中迁移。

  单时钟域

  FPGA中的目标频率

  FPGA的运行频率与先前相同,虽然取决于具体设备,但预计约为150到250MHz。

  1. 256 GOP/s @ 125MHz (单核)

  2. 高达12 TOP/s @ 250MHz (双核)

以加密RTL的形式提供

  B. 通过改进设计/验证方法并审查开发流程,我们确保质量不仅适用于FPGA,也适用于ASIC/ASSP。

  C. 开始提供一个模型开发环境(NDK),使用户能够为Efficiera开发深度学习模型。目前为止只有LeapMind实现了这项工作。

  ● 为Efficiera创建超小型量化深度学习模型所需的代码和信息包

  ● GPU深度学习模型的开发者可立即上手使用

  ● 支持PyTorch和TensorFlow 2的深度学习框架

  ● 学习环境为一个配备GPU的Linux服务器

  ● 推理环境为一个配备Efficiera的设备

  ● 来自LeapMind的技术支持

标签:LeapMind 我要反馈 
专题报道
2021 OEM机械设计技术研讨会-云会议

“2021OEM机械设计技术研讨会”以“纵深推进?多维赋能 数字化重塑设备制造”为主题, 邀请多家知名企业与来自纺织机械

带访问授权管理的安全门解决方案

对于制造型的企业来说,生产环境中总有需要保护的区域,来避免造成伤害事故。我们知道,当设备运行时,保护人员免受机器的伤害很

2022世界人工xpj大会参展申请

2022世界人工xpj大会参展申请火热进行中。

Baidu